Lecture 5

The () ? Operator in Curvilinear Coordinates

The transport leakage operator, 5?, is not just the dot-product of 6 and the spatial
gradient of ¢ in curvilinear coordinates. However, it represents %—f in all geometries. Extra
terms occur in curvilinear coordinates because the symmetry preservation in such systems
generally requires that the direction coordinate system change as a particle streams. For

instance, the directional coordinate system for 1-D spherical geometry is shown in Fig. 1.

—

Note that the particle direction is a function only of u = 5 " Also note that unless a

7

particle has a direction of u + 1, the particle direction changes as it streams, as illustrated

in Fig. 2. Using the chain rule, it follows that
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We next derive the partial derivative, %. Using the law of cosines, it follows from Fig. 2
that

r2(s) + As* — 2r(s)Ascos[t — 0(s)] = r’(s + As). (2)
Recognizing that cos[m — (s)] = cosf(s), we manipulate Eq. (2) to obtain,

r(s+ As) —r%(s)  As® +2r(s)Asu(s)
As B As ‘ )
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Figure 1: Direction coordinate system for 1-D sherical geometry. Note that there is only

one directional variable: u = 5 . 7, where n = —L—.
7
Taking the limit of Eq. (3) as As — 0, we get
0
QT(S)a_Z = 2r(s)p. (4)

Solving Eq. (4) for the desired partial derivative, we get

or
s =K. (5)
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Figure 2: Mlustration of change in direction coordinate as a particle streams in 1-D spherical

geometry. Note that u = cosf = n=-L
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We next derive the partial derivative, %. Using the law of signs, it follows from Fig. 2

that

r(s+As) r(s)

sin[r — 0(s)]  sin[0(s + As)] | (6)

Recognizing that sin(m — x) = sinx for any angle x, we manipulate Eq. (6) to obtain

r(s 4+ As)sin[f(s + As)] = r(s) sin[f(s)] . (7)

[r(s) + %As] [sin[@(s)] + cos[@(s)]%As = r(s)sin[d(s)],

r(s)sin[f(s)] + r(s) cos[@(s)]%As + Sin[@(s)]%As + O(As?) = r(s)sin[d(s)],

o0

SAS =— Sin[ﬁ(s)}%As + O(As?), (8)

r(s) cosld(s)]



Recognizing that 2& = cos[f(s)], we further manipulate Eq. (8) to obtain
6
r(s)% = —sin[f(s)]. 9)
Since p = cos @, it follows that g—g = —sinf, and further that
ou . .00
E = —SIHQ%. (].0)

Dividing Eq. (9) by r(s) and multiplying it by — sin[f(s)], we obtain

P _ L gnpos)). (11)

—sin[@(s)]g = )

Substituting from Eq. (10) into Eq. (11), we obtain the desired quantity:

o 1

s = —(1—u). (12)

Substituting from Eqs. (5) and (12) into Eq. (1), we obtain the leakage operator for 1-D
spherical geometry:
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" % ) (13)
Note that the angular derivative term disappears at ;= 1, which is appropriate since parti-
cles in these two directions do not change their direction as they stream. Because particles
in directions other than p = £1 change their direction as they stream, the leakage operator
contributes both a source and a sink to the differential phase-space volume associated with

directions about p. To see this, we must express Eq. (13) in an equivalent conservative

4



form:

— — 10
Q-V = @/)Jr;@( — ). (14)

Using Eq. (14), the 1-D spherical-geometry monoenergetic transport equation with isotropic

scattering and an isotropic distributed source becomes

10

0
Tyt g (L o = Lot Q. (15)

Integrating Eq. (15) over a finite phase-space volume characterized by radii, r; and ry, and

cosines, 1 and ps, we get

4773 (p)(r2, 1) ) gy — 4dar? (pab(r, 1) ) aq +

27T<1 - /j%) <7"71¢(7"7 M2) >V - 27T(1 - :u%) <T71¢(T, /JJ1> >V +
(o) ap = (ot )y + (Qo)y - (16)

where (-)y implies integration over the volume associated with the interval [rq,7s], (-)aq
implies integration over the solid angle associated with the interval, [uq, 2], and (:)ap
implies integration over both, i.e., over the phase-space volume. Without loss of generality,
we assume that gy and py are both positive, with s < 1. Under this assumption, we can
re-arrange Eq. (16) by placing sinks on the left side of the equation, and sources on the

right side:

dmry (i (ra, 1) ) ag +2m(1 = p3) (77 '(r, m2) )y, + (000) ap
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dmry (pb(r1, ) ) aq +2m(1 = pi) (ro(r m) )y + (ot )y +{Qo)y - (17)

The first term on the left side of Eq. (17) represents the rate at which particles flow out
of V through the surface associated with 5. The second term on the left side of Eq. (17)
represents the rate at which particles flow out of AQ due to the angular change associated
with streaming. The third term on the left side of Eq. (17) represents the rate at which
particles are removed from AP by absorption and scattering. The first term on the right
side of Eq. (17) represents the rate at which particles flow into V' through the surface
associated with ;. The second term on the right side of Eq. (17) represents the rate at
which particles flow into AQ2 due to the angular change associated with streaming. The
third term on the right side of Eq. (17) represents the rate at which particles scatter into
AP. The fourth term represents the rate at which particles are created within AP.

Note that if we integrate Eq. (15) over all directions, the balance equation contains no
contributions from the angular derivative term:

r—i%rzbf + 049 = Qo (18)

Furthermore, Eq. (18) can be written in a general form as

VT 4 0= Q. (19)

where ? is the standard spatial divergence operator. This is the case in all geometries.



